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ABSTRACT

A thread in recent work on the social impacts of AI systems is whether certain
properties of a domain should preclude the application of such systems to begin
with. Incorporating sociological work on accidents, I analyze two such properties:
complexity and tight coupling. Respectively analogous to uninterpretability and
lack of slack in a system, analysis suggests that current fundamental challenges
in AI research either create or aggravate these properties. If this analysis holds,
the burden of proof for deployment of AI systems is shifted even more onto those
calling for deployment to show that such systems do not cause harm, or that such
harm is negligible. Such a burden of proof may be incorporated into regulatory
or legal standards, and is desirable given the common power imbalance between
those implementing AI systems and those receiving their effects.

1 INTRODUCTION

Although there remains much to be done, more people are recognizing the importance of evaluat-
ing the societal consequences of AI systems. In particular, recent scholarship has contributed to a
collective understanding about the fairness (Barocas & Selbst, 2016), interpretability (Doshi-Velez
& Kim, 2017; Rudin, 2019), and safety (Amodei et al., 2016) of AI systems, in conjunction with
increasing political and legal attention on the regulation of AI deployment (Pasquale, 2019; Xiang
& Raji, 2019; Abdalla & Abdalla, 2020; Gilbert, 2021). A running theme throughout these analyses
has been whether there are certain domains to which AI systems, at least in their current state, should
not be applied. For instance, racial injustice in the United States has led to the jailing of dispropor-
tionately many Black people (Alexander, 2012); any AI system trained on such data will inherit the
resulting biases. As such, and especially given the consequential impact of sending somebody to
jail, many argue that AI systems should not be used to predict criminality (for Critical Technology,
2020). Besides poor-quality data and tasks that are themselves morally questionable, other reasons
to refrain from implementing AI systems might include: a lack of interpretability (Codella et al.,
2018; Tschandl et al., 2020), sensitivity to adversarial examples (Xu et al., 2019), and difficulty in
translating human values into mathematical language (Leike et al., 2018; Christian, 2020).

I build upon this line of inquiry by asking, are there structural properties of domains that interact
with AI systems to cause or exacerbate harm? If so, the burden of proof is upon those implementing
AI systems in such domains to show that harm does not exist, or is negligible. Given the power im-
balance between many of those implementing AI systems (formally educated, high-wealth, racially
privileged, located in the Global North, etc) and many of those who have little to no input yet must
live with the systems (not formally educated, low-wealth, racially oppressed, located in the Global
South, etc), any prior safeguard against unjust application of AI systems is essential. Even in the
absence of malicious intent, the gap between those designing systems and those subject to these
systems can cause substantial harm (Sambasivan et al., 2020; Barabas et al., 2020).

Drawing on Perrow (1999)’s work on accidents in high-risk systems, I analyze two such properties:
complexity and tight coupling. In short, complexity is roughly equivalent to uninterpretability and
tight coupling is roughly equivalent to a lack of slack in a system. Systems that are both complex
and tightly coupled can be expected to have a relatively higher rate of incidents causing harm than
systems that are neither. Current fundamental challenges in AI research suggest that AI systems
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may create or exacerbate these properties. Future AI research may alleviate these challenges, and
perhaps even permit AI systems to ameliorate the complexity and coupling of extant systems, but
the absence of such solutions urges caution about the deployment of AI systems in these scenarios.

2 NORMAL ACCIDENTS

My focus will be on what Perrow (1999) terms “normal accidents”. Colloquially, “accident” is
understood to mean an event that is unforeseen and injurious. An accident that is “normal” may
appear unforeseen, but is in reality unsurprising1 as a result of characteristics of the system in which
the event is embedded. Said informally, from looking at the system characteristics, we should not
be surprised to find out that something has gone wrong. For example, a car crash may appear to be
an accident, but if we also know that the roads were slippery, the car had no winter tires, and the
driver was inebriated, the event appears more to a normal accident rather than just an accident. The
importance of the concept of “normal accident” is that it captures a sense that the system in question
is at high risk of causing harm, and not just because of chance.

In addition, while “accident” connotes a sense that the incidence of harm could not have been re-
duced (e.g., it was completely up to chance), “normal accident” brings an increased sense of respon-
sibility, whether from operators, system designers, society, etc. Even so, the term “normal accident”
is unfortunate, as “accident” connotes a lack of moral guilt, while the choices leading to an accident
may have been the result of malicious intent or negligence, such as neglecting the interests of an
oppressed minority in favour of a privileged majority. Nevertheless, for consistency with Perrow
(1999), I will stick with this terminology.

2.1 MORE PRECISE DEFINITIONS

Now that I have built some intuition, let me define more precisely the concept of normal accidents.
Perrow (1999) formalizes two criteria a system must have for an accident to be normal: complexity
and tight coupling. A system is complex if its operation involves unfamiliar feedback loops, indirect
or inferential information about important variables, many control parameters with potential inter-
actions, limited understanding of the processes involved, and dependencies between components
of the system (Perrow, 1999, p. 88). An example of a complex system is a nuclear power plant:
unexpected interactions between components are involved in nuclear accidents (Britannica); direct
information about parameters can be unavailable because of unfavourable environmental conditions
for instruments; while our understanding of nuclear power has improved over time, systems believed
to be resistant to failure have failed (Perrow, 1999, p. 52). Complexity increases the chance that an
unforeseen system interaction occurs, all other things being equal. An breakdown of one component
may lead to an unexpected malfunction of a component thought irrelevant, but which is in reality
connected through complicated feedback loops. It may also be harder to foresee incidents and design
safeguards. Indeed, because of the number of potential interactions, safety devices can themselves
lead to accidents, as happened with the Fermi core meltdown in 1966 (Perrow, 1999, p. 53).

A system is tightly coupled if delays in its processing steps are not possible, permutations in the
ordering of steps are not possible, there is little slack in the resources required, and if buffers and
redundancies are rare or need to be designed-in (Perrow, 1999, p. 96). An example of a tightly
coupled system could be an airway: depending on fuel available, it may not be possible to change
the ordering or timing of aircraft landings; if little space is allowed between the trajectories of
different aircraft, crashes become more likely. Tight coupling makes it difficult to recover from
accidents because safeguards must be designed in: fortuitous substitutions are unlikely.

A system that is both complex and tightly coupled has a high risk of causing harm. Complexity
increases the chance that an unforeseen system interaction occurs and makes it more difficult to
foresee such interactions. By itself, a system interaction may not lead to harm if it is dealt with in a
timely fashion. Difficulty in understanding the processes of a system inhibits resolution of potential
problems, but any potential consequences are mitigated if there are buffers in place or if processes
are not time-sensitive. A potential problem that is resolved does not become an accident. On the
other hand, tight coupling presumes the lack of these last two factors. If a potential problem arises,
tight coupling makes the solution of that problem all the more difficult.

1Perrow (1999) instead describes such an accident as inevitable; this descriptor seems rather strong.
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Both of these criteria should be viewed on scales: a system can be more or less complex and more
or less tightly coupled. The degree of complexity or tight coupling can also change over time, as
organizational or technological changes improve safety. For instance, multi-engine aircraft are less
tightly coupled than single-engine aircraft because they are able to fly without all engines working. It
is also important to note that these two criteria do not exhaust all possible reasons why a system may
cause harm or be otherwise undesirable. Indeed, Perrow (1999)’s focus is heavily industry-based.
At the same time, as Perrow (1999) elaborates, the criteria hone in on the factors that implicated
in accidents in a number of industries, like nuclear power, dams, the military, and airways. The
application of AI systems is indeed proceeding in these domains (Chen & Jahanshahi, 2018; Allawi
et al., 2018; Kravchik & Shabtai, 2018).

3 HOW DO AI SYSTEMS AFFECT COMPLEXITY AND TIGHT COUPLING?

To understand the impact of AI systems on complexity and coupling, I will delineate two ways that
AI systems can be applied within larger systems: (1) as a component essential to the functioning
of the larger system; (2) as a supplementary component, whose removal would not prevent the
system from achieving its main goal. An example of (1) is if an AI system replaces a PID controller
for maintaining chemical equilibria in a plant; an example of (2) is if an AI system is used as an
additional layer of safety on top of already existing layers, such as a crack detection system in a
nuclear power plant that supplements human inspection (Chen & Jahanshahi, 2018). The upshot of
the following discussion will be that applications like (1) can create or aggravate complexity and
tight coupling, while applications like (2) can reduce them. Because of space limitations and the
risks involved with (1), I will disregard further discussion of (2).2

In the following discussion of AI systems, I will focus upon machine-learning (ML) systems, which
learn on input data to perform tasks in a way not explicitly specified by the system designers. This
paradigm can lead to underspecification, which will be crucial with respect to certain fundamental
ML research challenges. Underspecification and other fundamental research challenges suggest that
ML (sub)systems can create or aggravate complexity and tight coupling when used as essential
components of larger systems.

Poor out-of-distribution performance: ML systems are trained on datasets before being deployed
to the real world. Differences between the training set and the distribution of data observed in the
real world can differ, for example due to actions the AI subsystem takes. A subsystem that causes
distribution shift, but either is unable to reason about the shift or whose designers did not foresee
the shift, increases the complexity of the overall system. Even in the absence of distribution shift,
training data that is insufficiently representative of real-world conditions can cause issues. In the
case of detecting cracks in a nuclear power plant for instance, a crack detection subsystem may
encounter a type of crack not seen in the training set; a human operator may be able to recognize
the crack as such, but a subsystem may miss it entirely, placing the entire operation at risk if there is
no human oversight. Obtaining good out-of-distribution performance is currently an open problem
(Gulrajani & Lopez-Paz, 2020).

Objective misspecification: It is not always clear how to translate goals into objective functions for
ML systems to optimize. Even if the goal can be specified easily, the resulting objective can still
be underspecified with respect to safety constraints. A ML system may achieve the goal, but in a
way that designers did not intend (Amodei et al., 2016), and which may be difficult to predict and
prevent in advance. This ignorance contributes to the complexity of the overall system. Additionally,
the process of optimization itself can exacerbate tight coupling. For instance, an AI system in
charge of allocating production resources may have as its only goal to maximize output. The fact
that maximization of output is the only goal means that, with sufficiently powerful optimization
algorithms, any trade-offs between, say, keeping reserve stock just in case supply chains break down
and output maximization should be resolved in favour of output maximization. This outcome is to
the detriment of the robustness of the system. It remains to be seen how best to incorporate intentions
into objective functions (Leike et al., 2018; Gabriel, 2020), or whether alternative approaches to
optimization should be pursued (Taylor, 2016).

2(2) will not necessarily be safer than no AI system, however. Oversight can lead to riskier behaviour by
reducing self-regulation of behaviour (Pernell et al., 2017).
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Uninterpretable models: Some models, notably deep-learning models, are commonly understood
to be uninterpretable. Although there are many possible interpretations of “interpretable” (Lipton,
2016; Miller, 2019), even just the belief of uninterpretability impedes diagnosis and resolution of a
problem involving a ML model, increasing the complexity of the overall system. For example, an
engineer that does not understand why a ML system activated a safety device cannot decide whether
further action is warranted, or whether the triggering of the device was due to a false alarm, like
an instrument malfunction. A danger is if belief in the reliability of ML is taken as reason for its
implementation in critical systems, when such reliability may not hold, and if the uninterpretability
of the system is an impediment to averting catastrophe.

Insufficient features: In ML, designers must select the features to comprise the input to ML models.
Inevitably, some possible features are excluded, whether for reasons of monetary cost or ignorance.
Although designers may try as much as possible to include all the relevant features, they may only
come to know the relevance of some features after an accident informs them to that effect. Moreover,
while a human observer is limited by the ways in which their senses interact with measurement
instruments, an AI subsystem is limited not only by same conditions as the human observer, but also
by the fact that human observers select the features for consideration. The measurement instruments
may themselves be faulty, which was a crucial factor in the Three Mile Island accident (Perrow,
1999, p. 21). These issues do not just affect ML systems: humans also may not be attentive to all
the relevant details, and may indeed suffer from information overload. At the same time, the ideal
solution is not to trade in human limitations for ML limitations, but rather to try to overcome both.

4 RESPONSES TO RISKS

If one accepts that AI systems create or aggravate substantial risks in certain settings, what should
be done about it? I focus on restrictions to deployment, but mitigation of and compensation for the
harms of deployed systems deserve further study.

Refraining from implementing an AI system in the first place obviously reduces AI-related risk to
zero. As Barabas et al. (2020) discuss, implementation not only causes risks in the immediate do-
main of application, but also legitimates the domain itself. Developing ML tools for risk assessment
orients criminal justice work around incarceration, rather than on how judges may impose unafford-
able bail. Barabas et al. (2018) further argues for an increased attention on interventions to break
cycles of crime, rather than on predictions to manage criminality. Similarly, deployment of AI sys-
tems in high-risk domains may legitimate domains that perhaps we should not pursue in the first
place; Perrow (1999) argues about nuclear power to this end, for example.

Why do we live with high-risk systems? Although a common argument is the benefits of techno-
logical advancement, an omission is the relative power of parties to make decisions. Regardless
of whether there exist benefits to a certain technology or not, the fact that the powerless or ex-
cluded are not in a position to make that decision is relevant. Benefit can be just perceived benefit,
and perceptions may mask harms imposed on those different from us. Why must the powerful be
epistemically privileged over the powerless? Even if the benefits are real, their distribution is not
guaranteed to be even. The imposition of risk onto another party for the sole benefit of the imposer is
unjust. Gilbert (2021) discusses the normative structures imposed upon society whenever one party
has monopolistic control over the implementation of a system. In such a situation, the powerless
are effectively governed in a manner in which they have no say. A commitment to democratic rule
demands attention to power imbalances in the deployment of AI.

5 LIMITATIONS OF THE PRESENT STUDY

The focus of this work was on analyzing the impacts of AI systems in terms of two properties of high-
risk systems: complexity and tight coupling. In addition to the theoretical framework thus presented,
a case study of an AI system in terms of complexity and tight coupling would aid understanding of
the importance of these criteria in analyzing AI-related risks. As noted above, further discussion
of the ways to mitigate and compensate for harms would be helpful, particularly legal perspectives
(Witt, 2006; Sullivan & Schweikart, 2019).
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