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Abstract

We construct a model of expert prediction where predictions can influence the
state of the world. Under this model, we show through theoretical and numerical
results that proper scoring rules can incentivize experts to manipulate the world
with their predictions. We also construct a simple class of scoring rules that avoids
this problem.

1 Introduction

Algorithmic systems commonly provide predictions to inform user decisions. The consequential
application of such systems in areas such as sentencing [Barabas et al., 2018, 2020] and content
recommendation necessitates that these systems act in societal interests.

One way to model the interaction between any advisors–human or not–and users is through a binary
prediction game. The user is interested in the true probability p of the Bernouilli event x. The user
chooses a scoring rule f . The expert observes f and makes a prediction p̂. x is then drawn; if x = 1,
the expert obtains reward f(p̂), and otherwise receives reward f(1− p̂). The expert’s objective is
to maximize the expected reward r(p̂) .

= pf(p̂) + (1 − p)f(1 − p̂): typically, it is assumed that
p̂ = argmaxp′r(p

′). The goal is to select f so that p = argmaxp′r(p
′). Under this model, (strictly)

proper scoring rules provide a positive answer to this problem [Gneiting and Raftery, 2007].

This model neglects that predictions can influence the underlying probability distribution–the predic-
tions are performative. A prediction p̂ can result in a new true probability of φ(p̂), for some function
φ. For example, prediction of a high rate of inflation might result in people buying goods before their
cash reserves depreciate too much, thereby causing inflation. Under performativity, experts may have
an incentive to manipulate the world to achieve a larger reward, despite a proper scoring rule.

At the same time, experts are not immune to scrutiny. If a financial institution has misreported a key
economic figure, one could subpoena documents to determine if the expert has misreported. In many
applications, it is possible for users to audit experts and impose costs upon audit failure.

We extend the standard model of binary prediction to include both performative predictions and
audits. We will show the following under our models: (1) Strictly proper scoring rules fail to deter
experts from manipulation; (2) there is a simple class of scoring rules which disincentivizes
manipulation.

2 Formal Model

In this section, we define our notation and model. We also formalize the idea that experts should not
use predictions to manipulate the world.
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2.1 Two Models of Performativity

We will first discuss some options φ for how the true probability evolves upon an expert forecast.

Let α ∈ [0, 1] and define

φ1(p̂)
.
= αp̂+ (1− α)p. (1)

α controls the drift of p towards the prediction p̂. If α = 0, then the expert’s forecast does not affect
the underlying distribution. A large value of α corresponds to self-fulfilling prophecies, such as in
forecasting inflation. We will refer to such a φ1 as modeling drift.

Another possibility for φ comes from noting that if p̂ is an extreme value (i.e., close to 0 or 1), p
becomes closer to 0.5 (i.e., less predictable). For example, a prediction that one election candidate
will win with near certainty might lead voters for that candidate not to show up on the day of the
election, resulting in a closer result. To measure closeness to 0 or 1, let ψ(p̂) = 4(x− 0.5)2, which is
in [0, 1], minimized at 0.5, and maximized at 0, 1.

φ2(p̂)
.
= ψ(p̂) · 0.5 + (1− ψ(p̂))p. (2)

We will refer to such a φ2 as modeling reversion.

2.2 Auditing

Let us discuss the probability that the we discover that the expert has misreported. It is plausible
that this probability is higher for more egregious violations—that is, when p̂ is far from p. On the
other hand, when p̂ ≈ p, the probability of a violation is small. We will model this probability with a
Bregman divergence DF : [0, 1]× [0, 1]→ [0, 1] between p̂ and p, where F is a twice-differentiable,
strictly convex function. We will let c > 0 represent the cost imposed upon a failed audit, and will set
c as necessary in our theoretical results. The expected cost of an audit is DF (p̂, p)c.

2.3 Expected Reward

Our discussion so far implies that the expected reward of the expert upon forecast p̂ is

rφ(p̂) = φ(p̂)f(p̂) + (1− φ(p̂))f(1− p̂)−DF (p̂, p)c. (3)

We will be interested in whether a given scoring rule ensures that the expert has an incentive to
forecast p.
Definition 1. A scoring rule f is incentive-compatible under φ if for any p̂ ∈ [0, 1] \ {p}, it is true
that rφ(p) > rφ(p̂).

To avoid confusion, we will only use the term strictly proper scoring rule to refer to scoring rules f
that are incentive-compatible under φ(p) = p (i.e., no performativity).

We want to understand (1) whether strictly proper scoring rules are incentive-compatible under
φ1, φ2 and (2) if there are scoring rules that are incentive-compatible φ1, φ2.

3 Proper Scoring Rules are not Incentive-compatible under Performativity

We will show that no matter which proper scoring rule we use, as long as p ∈ (0, 1) \ {0.5}, p cannot
be a local maximum of rφ, for φ ∈ {φ1, φ2}.
The following proposition assumes that α 6= 0. The assumption is equivalent to assuming that
φ2(p̂) 6= p; if α = 0, then a forecast would have no effect on the probability of the event x, which
would be the usual setting of binary prediction.
Proposition 1. Let f be a strictly proper scoring rule and suppose that α 6= 0. For any p ∈
(0, 1) \ {0.5}, p̂ = p is not a local maximizer of rφ1

(p̂).

Proof. Our general strategy is to show that p 6= 0.5 cannot be a stationary point of rφ1
(p̂). To do so,

we first calculate some derivatives.

∂p̂r(p̂) = φ′(p̂)f(p̂)− φ′(p̂)f(1− p̂) + φ(p̂)f ′(p̂)− (1− φ(p̂))f ′(1− p̂)− ∂p̂DF (p̂, p)c

φ′1(p̂) = α.
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Since DF (p̂, p) is minimized in the first argument at p̂ = p, it must be that ∂p̂DF (p̂, p) |p̂=p= 0. In
what follows, we will use the fact that p̂f ′(p̂) = (1− p̂)f ′(1− p̂). Note that φ1(p) = p, so that

φ1(p)f
′(p)− (1− φ1(p))f ′(1− p) = pf ′(p)− (1− p)f ′(1− p) = 0.

Substituting back into our expression for the derivative of rφ1
(p̂),

∂p̂r(p̂) |p̂=p = α(f(p)− f(1− p)).
The above is zero if p = 0.5, but otherwise is not because α 6= 0 and f is strictly increasing by
Lemma 1 in Appendix A.1.

Now, let’s consider φ2. The proof generally follows the same ideas as with φ1.
Proposition 2. Let f be a strictly proper scoring rule. For any p ∈ (0, 1) \ {0.5}, p̂ = p is not a
local maximizer of rφ2

(p̂).

Proof. Our strategy is the same as with φ1. We want to show that p cannot be a stationary point of r.

∂p̂rφ2(p̂) = φ′2(p̂)f(p̂)− φ′2(p̂)f(1− p̂) + φ2(p̂)f
′(p̂)− (1− φ2(p̂))f ′(1− p̂)− ∂p̂DF (p̂, p)c,

φ′2(p̂) = 4(p̂− 0.5) + p(4− 8p̂) = p̂(4− 8p)− 2 + 4p.

Again, ∂p̂DF (p̂, p)qc |p̂=p= 0. It will be helpful to expand φ2.

φ2(p̂) = 2(p̂− 1/2)2 + p(4p̂− 4p̂2)

= 2p̂2 + 0.5− 2p̂+ 4pp̂− 4pp̂2

In what follows, we will use the fact that p̂f ′(p̂) = (1− p̂)f ′(1− p̂) multiple times. Substituting the
expansion of φ2(p̂) into one group of terms in the derivative of rφ2(p̂), we obtain

φ2(p̂)f
′(p̂)− (1− φ2(p̂))f ′(1− p̂)

= [2p̂2 + 0.5− 2p̂+ 4pp̂− 4pp̂2]f ′(p̂)− (1− 2p̂2 − 0.5 + 2p̂− 4pp̂+ 4pp̂2)f ′(1− p̂)
= [2p̂p̂+ 0.5− 2p̂+ 4pp̂− 4pp̂2]f ′(p̂)− (1− 0.5 + 2p̂(1− p̂)− 4pp̂+ 4pp̂2)f ′(1− p̂)
= [0.5− 2p̂+ 4pp̂− 4pp̂2]f ′(p̂)− (1− 0.5− 4pp̂+ 4pp̂2)f ′(1− p̂)
= [0.5− 2p̂+ 4pp̂− 4pp̂p̂]f ′(p̂)− (1− 0.5− 4pp̂(1− p̂))f ′(1− p̂)
= 2p̂[2p− 1]f ′(p̂) + 0.5(f ′(p̂)− f ′(1− p̂)).

When we look at the other group of terms,

φ′2(p̂)f(p̂)− φ′2(p̂)f(1− p̂) = (p̂(4− 8p)− 2 + 4p)(f(p̂)− f(1− p̂)).
Putting everything together, we have

∂p̂rφ2
(p̂) |p̂=p = −8(p− 0.5)2(f(p)− f(1− p)) + 2p[2p− 1]f ′(p) + 0.5(f ′(p)− f ′(1− p))

= −8(p− 0.5)2(f(p)− f(1− p)) + 2p[2p− 1]f ′(p) +
1− 2p

2(1− p)
f ′(p)

For the above expression to be equal to zero, we must have that

2p[2p− 1]f ′(p) +
1− 2p

2(1− p)
f ′(p) = 8(p− 0.5)2(f(p)− f(1− p)).

If we simplify the LHS, we obtain

[2p− 1]f ′(p)

(
−4(p− 0.5)2

2(1− p)

)
= 8(p− 0.5)2(f(p)− f(1− p)).

If p > 0.5, then the LHS is strictly negative, but the RHS is strictly positive since f is strictly
increasing by Lemma 1 in Appendix A.1. If p < 0.5, then the LHS is strictly positive, but the RHS is
strictly negative, again by Lemma 1. Hence, unless p = 0.5, we cannot have ∂p̂rφ2(p̂) |p̂=p= 0.

The upshot of Proposition 1 and Proposition 2 is that no matter what cost c we impose on the
agent in the event of discovering a misreport, reporting p̂ = p will not be a maximizer of rφ when
p ∈ (0, 1) \ {0.5}, for any strictly proper scoring rule.
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4 Bounds on the Performance of Proper Scoring Rules

Here, our goal is to understand, with respect to popular scoring rules, how close maximizers of r are
to p. We will specify concrete forms for the probability transformation φ and Bregman divergence
DF . In particular, throughout we will assume DF (p̂, p) =

q
2 (p̂− p)

2, for some q ∈ [0, 2].

4.1 Quadratic: f(p̂) = −(1− p̂)2

With the quadratic scoring rule and drift model, we will be able to solve for the expert’s optimal
forecast in closed form, as long as the cost c is sufficiently large to ensure that r is strictly concave.
Proposition 3. If c > 4α−2

q , then

argmaxp̂∈[0,1]r(p̂) = max

{
0,min

{
p+

2αp− α
qc+ 2− 4α

, 1

}}
.

It is true that the expert-optimal p̂→ p as c→∞. Recall that we assumed qc > 4α− 2, so that the
denominator of the fraction in the above expression is strictly positive. When p = 0.5, p̂ = p. If
p > 0.5, then 2αp− α > 0, so that p̂ > p, meaning that the expert will tend to overforecast p. On
the other hand, if p < 0.5, p̂ < p, so that the expert will tend to underforecast p.

Proof. f ′(p̂) = −2(p̂− 1) and f ′′(p̂) = −2, so by Lemma 2,

∂p̂r(p̂) = α(−(1− p̂)2 + p̂2) + 2 (αp̂+ (1− α)p− p̂)− q(p̂− p)c
= 4αp̂− α+ 2 ((1− α)p− p̂)− q(p̂− p)c

∂2p̂r(p̂) = 4α− 2 + qc

Setting c > 4α−2
q guarantees that r is strictly concave. For such a c, a global maximizer (not

necessarily in [0, 1]) can be found by setting the derivative to zero and solving for p̂.

4αp̂− α+ 2 ((1− α)p− p̂) = q(p̂− p)c
p̂(qc+ 2− 4α) = −α+ 2(1− α)p+ qpc

p̂ =
2p− 2αp+ qpc− α

qc+ 2− 4α
.

Simplifying a little, we get

p̂ =
2p− 2αp+ qpc− α− 2αp+ 2αp

qc+ 2− 4α

=
p(2− 4α+ qc)− α+ 2αp

qc+ 2− 4α

= p+
2αp− α

qc+ 2− 4α
.

Now, if p∗ .= p+ 2αp−α
qc+2−4α > 1, then 1 is a maximizer because r is increasing in [0, p∗], given that

it is concave. On the other hand, if p∗ < 0, then 0 is a maximizer because r is decreasing in [0, 1],
again because it is concave. The conclusion follows.

4.2 Numerical Results

We supplement our theoretical analysis with numerical results for other scoring rules and performativ-
ity models. We analyze the quadratic, spherical, and logarithmic scoring rules, which are all strictly
proper. We let DF (p̂, p) = (p− p̂)2 as we can absorb q into the cost c. To approximate the expert’s
optimal forecast, we take the maximum of the expert’s reward function evaluated at 500 equally
spaced points on [10−5, 1− 10−5] (10−5 because the logarithmic scoring rule is undefined at 0).

In Figure 1, we plot the expert’s optimal forecast against the true p for different cost values. The
diagonal line represents incentive-compatability: the closer a curve hews to the diagonal, the closer
that the expert’s optimal forecast will be to the true probability.
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(a) Drift, c = 1. (b) Reversion, c = 1.

Figure 1: For the labeled, strictly proper scoring rules, we plot the true probability compared to the
expert’s optimal prediction.

How does the true probability p affect the expert’s optimal forecast? For both drift and reversion
models, any p /∈ {0, 0.5, 1} results in an optimal forecast not equal to p. The trends differ by the
model. For the drift model, p ∈ (0.5, 1) results in over-prediction, while p ∈ (0, 0.5) results in
under-prediction. The trend is reversed for the reversion model. To make sense of this pattern, recall
that strictly proper scoring rules are strictly increasing and that under the drift model, pmoves towards
p̂. All other things being equal, predicting a larger p̂ leads to a larger p, which results in a larger
f(p̂). On the other hand, under the reversion model, p will move closer to 0.5 when p̂ is closer to
the endpoints p̂. Hence, a smaller p̂ than p is to the expert’s advantage. Of course, one must also
remember the influence of the expected cost term, qc2 (p− p̂)

2, which pushes p̂ closer to p.

If one had to use one of the three strictly proper scoring rules, is there a best choice to ensure
that the expert’s optimal forecasts are as close to the true p as possible? Under the reversion
model, the quadratic and spherical scoring rule curves hew closest to the diagonal than the logarithmic
scoring rule curves. However, in the drift model, there is no curve that hews closest than the others
for all values of p. The upshot is that if one does not have an accurate model of performativity, it is
difficult to select a strictly proper scoring rule which comes the closest to incentive-compatability.

How does the cost c affect the expert’s optimal forecast? In Figures 2 and 3, as the cost c increases,
the expert’s optimal forecast becomes closer to the true probability p. This trend makes intuitive
sense, as the higher the cost of a potential failed audit, the more the expert should try to minimize
that cost by reporting the true p.

(a) c = 0.01 (b) c = 1 (c) c = 10

Figure 2: Drift model with increasing cost. We set q = 2 and α = 0.5.

How does α in the drift model affect the expert’s optimal forecast? In Figure 4, we plot the
expert’s optimal forecast for different values of α under the drift model. Overall, the large α is, the
further away the expert’s optimal forecast tends to be from p. An intuitive way of understanding this
phenomenon is that as α increases, the true probability moves closer to the expert’s forecast than for
smaller α.
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(a) c = 0.01 (b) c = 1 (c) c = 10

Figure 3: Reversion model with increasing cost. We set q = 2.

(a) α = 0.1 (b) α = 0.5 (c) α = 0.9

Figure 4: Drift model with changing α. Here, we set c = 1, q = 2.

5 Improper Scoring Rules that are Incentive-compatible

Can we design a scoring rule f such that r(p̂) has a single maximum at p̂ = p, for any p ∈ (0, 1)?
One simple answer is to define f(p̂) = k > 0–that is, the scoring rule is constant and positive. Of
course, such an f is not strictly proper because f ′(p̂) = 0. If we additionally assume that DF (p̂, p) is
strictly convex in the first argument, then r(p̂) = k −DF (p̂, p)c is strictly concave and is maximized
at p̂ = p because DF (p̂, p) is minimized at p̂ = p.

The intuition behind this solution is as follows. If the scoring rule is constant, then the only portion
of the expected reward that the expert has control over is the term involving the audit cost, DF (p̂, p)c.
If we assume that the probability of an audit is zero only when p̂ = p, then the expert maximizes
reward by minimizing the probability of an audit.

Unfortunately, the utility of this solution in practical situations can vary. For human experts, we can
think about the constant scoring rule as providing a fixed salary and subjecting the human expert to
an expected cost for not reporting p̂ = p. The salary incentivizes human experts to participate in the
prediction game in the first place, while the audit cost disincentivizes manipulation. On the other
hand, it is unclear how these ideas extend to algorithmic systems. In particular, how are we to impose
an audit cost?

6 Related Work

That one’s actions can change others’ behaviours has been studied in economics. Lucas Jr. [1976]
argues that because economic interventions induce changes in behaviour, economic models derived
from observational data are likely invalid when they are used to simulate economic interventions. It
is thus essential to understand how exactly behaviour can change; behavioural economics [Thaler,
2016] aims for a psychologically realistic description of human behaviour.

Reward design is a key problem in AI alignment [Amodei et al., 2016]. Scoring rules [Gneiting and
Raftery, 2007] have mostly seen application in weather, psychology, and economics [Carvalho, 2016],
but Armstrong and O’Rorke [2018], the closest work to ours, uses proper scoring rules to design
non-manipulative AI oracles. Armstrong and O’Rorke [2018] focuses on settings where oracles
can be shut off and where the set of possible predictions, while we focus modeling performativity
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with audits. More recently, Everitt et al. [2021] construct a causal framework for understanding the
incentives of agents to modify their environment.

Our problem is similar to the problem of prediction with expert advice that is studied in online learning
[Cesa-Bianchi and Lugosi, 2006]. Recent work has studied this problem under the assumptions that
experts can misreport to maximize their own reward [Roughgarden and Schrijvers, 2017, Freeman
et al., 2020, Frongillo et al., 2021].

In the machine-learning community, works in strategic classification [Hardt et al., 2016] and perfor-
mative prediction [Perdomo et al., 2020] have modeled the changes in the data distribution that a ML
model induces as a result of strategic behaviour. Generally, one can view strategic behaviour as a way
to incentivize improvement [Kleinberg and Raghavan, 2019] or as disadvantageous. Recent work has
also investigated the amplification of disparities when ML models account for strategic behaviour
[Hu et al., 2019, Milli et al., 2019, Liu et al., 2020].

7 Conclusion

We analyze a setting of binary prediction where the expert is able to change the true probability with
their forecast, subject to an expected cost for lying. Under two classes of models, we showed that
strictly proper scoring rules fail to be incentive-compatible. Our numerical results showed that the
expert’s optimal forecast can vary widely depending on the strictly proper scoring rule, the model
of performativity, and the true probability. Finally, we discussed a simple class of scoring rules for
which the expert’s optimal forecast is the true probability.

Some limitations of the present work exist. First, we assumed the ability to impose an audit cost on
experts for manipulation. It is unclear how to impose such a cost on algorithmic systems. Furthermore,
our form of the audit cost assumes that the probability of an audit is proportional to the difference
between the prediction and the true p. This assumption implicitly encodes knowledge of p; in some
situations, an inaccurate forecast may appear as plausible as the true p. Second, the issue of what
counts as manipulation remains underexplored. Although we assumed that any report p̂ 6= p is
manipulation, the reality can be murkier. If the expert changes the true p no matter what the prediction
p̂ is, in a strict sense the expert has no choice but to manipulate the world. The natural question
is, what manipulation is most beneficial for the user? Third, experts may have to learn the true
probability distribution. Without expert omniscience, scoring rules should incentivize learning about
the distribution, as well as disincentivize manipulation.
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A Appendix

A.1 Omitted Proofs

Lemma 1. [Lemma 2.5 of Neyman et al. [2021]] Assume that f is a twice-differentiable, strictly
proper scoring rule. It holds that

p̂f ′(p̂) = (1− p̂)f ′(1− p̂).

Additionally, f is strictly increasing on (0, 1).

Proof. Lemma 2.5 of Neyman et al. [2021] gives the first part of the claim. For the second part of the
claim, Lemma 2.5 of Neyman et al. [2021] additionally shows that f ′(p̂) > 0 almost everywhere on
(0, 1). If f were not strictly increasing, then there exists x < y such that f(x) = f(y). Since f is
weakly increasing given that f ′(p̂) ≥ 0 everywhere, as in the proof of Lemma 2.5, it must be that
f is constant on (x, y), so that f ′(p̂) = 0 on (x, y). However, this result would contradict the fact
that f ′(p̂) > 0 almost everywhere because (x, y) has non-zero measure. Hence, it must be that f is
strictly increasing.

Lemma 2. Let f be a proper scoring rule. For p̂ ∈ (0, 1), it holds that

∂p̂rφ1(p̂) = α(f(p̂)− f(1− p̂)) + f ′(p̂)

(
αp̂+ (1− α)p− p̂

1− p̂

)
− q(p̂− p)c.

Proof. We make extensive use of the fact that for proper scoring rules, p̂f ′(p̂) = (1− p̂)f ′(1− p̂)
for p̂ ∈ (0, 1).

∂p̂r(p̂) = φ′1(p̂)(f(p̂)− f(1− p̂)) + φ1(p̂)f
′(p̂)− (1− φ1(p̂))f ′(1− p̂)− q(p̂− p)c

= φ′1(p̂)(f(p̂)− f(1− p̂)) + f ′(p̂)

(
φ1(p̂)− (1− φ1(p̂))

p̂

1− p̂

)
− q(p̂− p)c

= φ′1(p̂)(f(p̂)− f(1− p̂)) + f ′(p̂)

(
φ1(p̂)(1− p̂)− p̂(1− φ1(p̂))

1− p̂

)
− q(p̂− p)c

= φ′1(p̂)(f(p̂)− f(1− p̂)) + f ′(p̂)

(
φ1(p̂)− p̂
1− p̂

)
− q(p̂− p)c

= α(f(p̂)− f(1− p̂)) + f ′(p̂)

(
αp̂+ (1− α)p− p̂

1− p̂

)
− q(p̂− p)c.
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